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Abstract: A dozen Iris species (Iridaceae) are considered traditional remedies in Kurdistan, especially
for treating inflammations. Phytochemical studies are still scarce. The information reported in
the literature about Iris species growing in Kurdistan has been summarized in the first part of this
paper, although, except for Iris persica, investigations have been performed on vegetal samples
collected in countries different from Kurdistan. In the second part of the work, we have investigated,
for the first time, the contents of the methanolic extracts of Iris postii aerial parts and rhizomes
that were collected in Kurdistan. Both extracts exhibited a significant dose-dependent free radical
scavenging and total antioxidant activities, comparable to those of ascorbic acid. Medium-pressure
liquid chromatographic separations of the two extracts afforded L-tryptophan, androsin, isovitexin,
swertisin, and 2”-O-α-L-rhamnopyranosyl swertisin from the aerial parts, whereas ε-viniferin, trans-
resveratrol 3,4′-O-di-β-D-glucopyranoside, and isotectorigenin were isolated from the rhizomes.
This is the first finding of the last three metabolites from an Iris species. The various remarkable
biological activities of isolated compounds scientifically sustain the traditional use of I. postii as a
medicinal plant.

Keywords: phenolics; terpenoids; isoflavones; swertisin 6-C-glycosides; resveratrol 3,4′-O-diglucoside;
Iris postii; antioxidant activity; Kurdish medicinal plants

1. Introduction

Traditional medicines still hold an important role among health care practices of
many countries, including Arab countries and Iraqi Kurdistan [1]. A Neanderthal burial
discovered at Shanidar cave (number IV in the series of skeletons) in northern Iraq, dated
approximately 60,000 years ago [2], is evidence that herbal medicine has probably been
practiced in the mountains and plains of Kurdistan since the dawn of civilization. Indeed,
a well-organized form of medicine, which made intense uses of plant-derived drugs,
remedies, potions and oils, can be traced back in Iraq to the Sumerian period (3000–1970
B.C.) and then to the Babylonian and Assyrian periods (1970–539 B.C). Later, this knowledge
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was translated and enriched by Arab physicians during the Abbasid period (500–1038 A.D).
Still today, the majority of the approximately 1500 plants used in Iraq are appreciated for
their medicinal and aromatic properties. Most medicinal plants are collected from their
wild habitats, but some are also cultivated [3].

Medicinal herbs growing in Iraqi Kurdistan are especially used by people living in
the villages on the mountains and in the rural areas; however, sellers of natural medicinal
products (Figure 1) are also present in the bazaars of the main towns, such as Erbil and
Sulaymaniya [4,5].
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atous irises) or, in drier climates, from bulbs (bulbous irises). The showy flowers are char-
acterized by a violet-like scent. The plants grow in temperate regions across the Northern 
Hemisphere, from Eurasia to North America [8]. Many Iris species are ornamental plants; 
however, they are also used in various traditional medicines for the treatment of inflam-
mations, cancer, bacterial and viral infections, and other diseases. Extensive phytochemi-
cal investigations of the genus have led to the isolation of different isoprenoids, flavo-
noids, isoflavonoids and their glycosides, xanthones, quinones, and stilbene glycosides, 
among others [8,9]. On the other hand, isolated bioactive compounds have shown anti-
bacterial, anti-neoplastic, antioxidant, cytotoxic, anti-plasmodial, molluscicidal, anti-in-
flammatory, phytoestrogenic and antituberculosis properties [9]. Moreover, an essence 
called “orris butter” and an absolute essential oil with the scent of the flowers are derived 
from the bulbs of some Iris, e.g., I. florentina and I. germanica; they are used in the manu-
facture of luxury expensive perfumes, such as Chanel No. 19 (1970) and So pretty by Cartier 
(1995) [10]. 

Twelve species of Iris are reported to grow in Iraq; in the Kurdistan region, they occur 
especially on mountainous regions, such as Halgurd Mountain (Choman) and Korek 
Mountain (Rawanduz). These plants include Iris aucheri (Baker) Sealy, I. barnumiae Baker 
et Foster, I. caucasica Hoffm., I. gatesii Foster, I. germanica L., I. heylandiana Boiss. et Reut. 
ex Boiss., I. hymenospatha B. Mathew et Wendelbo, I. masia Dykes, I. persica L., I. postii 
Mouterde, I. pseudocaucasica Grossh., and I. reticulata M. Bieb. [11]. Of these species only I. 
germanica L. and I. persica L. have been investigated phytochemically. I. persica has been 
investigated by a Kurdish research group [12,13]; instead, due to the wide geographical 
distribution and economic importance, I. germanica has been subjected to several investi-
gations in countries different from Kurdistan. The results of these investigations have 
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Despite the wide use of herbal remedies, phytochemical studies on Kurdistan medici-
nal plants are still in their infancy and only a few papers have been published so far that
describe the structures and bioactivities of isolated metabolites. As part of our ongoing
project on scientific validation of Kurdistan traditional plants, we directed our attention to-
ward the genus Iris. This large genus of the family Iridaceae (Angiosperms) contains about
260–300 species [6,7] of perennial plants growing from creeping rhizomes (rhizomatous
irises) or, in drier climates, from bulbs (bulbous irises). The showy flowers are charac-
terized by a violet-like scent. The plants grow in temperate regions across the Northern
Hemisphere, from Eurasia to North America [8]. Many Iris species are ornamental plants;
however, they are also used in various traditional medicines for the treatment of inflamma-
tions, cancer, bacterial and viral infections, and other diseases. Extensive phytochemical
investigations of the genus have led to the isolation of different isoprenoids, flavonoids,
isoflavonoids and their glycosides, xanthones, quinones, and stilbene glycosides, among
others [8,9]. On the other hand, isolated bioactive compounds have shown antibacterial,
anti-neoplastic, antioxidant, cytotoxic, anti-plasmodial, molluscicidal, anti-inflammatory,
phytoestrogenic and antituberculosis properties [9]. Moreover, an essence called “orris
butter” and an absolute essential oil with the scent of the flowers are derived from the bulbs
of some Iris, e.g., I. florentina and I. germanica; they are used in the manufacture of luxury
expensive perfumes, such as Chanel No. 19 (1970) and So pretty by Cartier (1995) [10].

Twelve species of Iris are reported to grow in Iraq; in the Kurdistan region, they
occur especially on mountainous regions, such as Halgurd Mountain (Choman) and Korek
Mountain (Rawanduz). These plants include Iris aucheri (Baker) Sealy, I. barnumiae Baker et
Foster, I. caucasica Hoffm., I. gatesii Foster, I. germanica L., I. heylandiana Boiss. et Reut. ex
Boiss., I. hymenospatha B. Mathew et Wendelbo, I. masia Dykes, I. persica L., I. postii Mouterde,
I. pseudocaucasica Grossh., and I. reticulata M. Bieb. [11]. Of these species only I. germanica L.
and I. persica L. have been investigated phytochemically. I. persica has been investigated by
a Kurdish research group [12,13]; instead, due to the wide geographical distribution and
economic importance, I. germanica has been subjected to several investigations in countries
different from Kurdistan. The results of these investigations have been summarized in
the first part of this paper. The phytochemical literature reported in Scifinder and Google
Scholar databases up to August 2020 has been reviewed. In the second part of this paper,
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we describe the results of our phytochemical investigation of non-volatile secondary
metabolites isolated from the aerial parts and rhizomes of Iris postii Mouterdi.

2. Results and Discussion
2.1. Literature Data about Iris germanica and Iris persica
2.1.1. Iris germanica

Iris germanica L. is probably the most thoroughly investigated Iris species. Rhizomes
have been traditionally used for various oral and topical applications, e.g., sores, freck-
les [14], and to relieve teething-associated pain [15]. Root decoctions of the plant have been
commonly applied as antispasmodic, emmenagogue, diuretic, anti-insomnia, and cathar-
tic agents [16]. They decrease smooth muscle activity in vivo and show anti-serotonin
effects [17]. Extracts of I. germanica showed cytotoxic [18,19], antioxidant [20–22], an-
timutagenic [22], antifungal [23], antimicrobial [24–26], anti-inflammatory [24,27], anti-
biofilm [28], antiulcer [29], hypolipidemic [30], molluscicidal [31], and amyloid β (Aβ)
induced memory impairment activities [32]. The application of rhizomes in both traditional
and modern medicine has been mainly based on the presence of isoflavones and essential
oils in the extracts.

Isoflavonoids

Isoflavonoids are mainly accumulate in the rhizomes and form the largest group of
flavonoids isolated from I. germanica. Their structures (1–48) are shown in Figure 2, whereas
the reported biological activities are shown in Table 1.

Iris isoflavonoids include germanaism A (1) [15,33,34], B (2) [15,17,33,34], C (3) [17],
D (4) [17], E (5) [15,17], F (6) [17], G (7) [17], and H (8) [34], tectoridin (9) [35,36], iridin
(10) [15,24,33,35,37–40], iridin A (11) [40], and S (12) [38,40,41], iristectorin A (13) [39],
irisolidone-7-O-β-D-glucopyranoside (14) [15,37,42], 5,3′-dihydroxy-4′,5′-dimethoxyiso-
flavone 7-O-glucoside (15) [37], homotectoridin (16) [36], irilone (17) [14,15,24,34,38,40,42–45], ir-
ilone 4′-methyl ether (18) [14,25,38,40], irilone 4′-O-β-D-glucopyranoside (19) [15,24,33,34,38,40],
irilone 4′-O-[β-D-glucopyranosyl (1→6)β-D-glucopyranoside] (20) [15], 8-hydroxyirilone
(21) [38], 8-hydroxyirilone 5-methyl ether (22) [38], iriflogenin (23) [15,34,42,44], iriflogenin
4′-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside] (24) [15], irifloside (25) [15,34], iris-
florentin (26) [15,44,45], dichotomitin (27) [15,37], irisolone (nigricin) (28) [14,15,23,34,44–46], ni-
gricanin (iriskashmirianin) (29) [42,44], iriskashmirianin A (30) [34], 3′-O-metyliriskumaonin
(iriskumaonin methyl ether) (31) [15,34,44,45], genistein (32) [35], 5,7-dihydroxy-3-(3′-
hydroxy-4′,5′-dimethoxy)-8-methoxy-4H-1-benzopyran-4-one (33) [14], muningin (34) [35],
tectorigenin (35) [14,35], 7-O-methyl-tectorigenin-4′-O-[β-D-glucopyranosyl-(1→6)-β-D-
glucopyranoside] (36) [15], irigenin (37) [14,15,24,25,35,37–40,42,44,45], irigenin S (38) [24,38,40],
irilin A (39) [31], B (40) [31], and D (41) [35], irisolidone (42) [15,23,24,37,38,40,42–46],
iristectorigenin A (43) [14,39,44,45], 5,7-dihydroxy-3-(3′-methoxy-4′-hydroxyphenyl)-6-
methoxy-4H-1-benzopyran-4-one (44) [14,45], iristectorigenin B (45) [35], 5,7,3′-trihydroxy-
6,4′-dimethoxyisoflavone-7-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside] (46) [15],
5,7,8-trihydroxy-3-(4-methoxyphenyl)-2-methyl-4H-chromen-4-one (47) [47] and 6,7,-dihydroxy-
3-(4-methoxyphenyl)-2-methyl-4H-chromen-4-one (48) [47]. Iris isoflavanoid structures can
be collected in five different groups, depending on whether they contain: (A) a methylene-
dioxy group at C-6 and C-7 and an oxygenated group at C-4′; (B) an OH group at C-5
and a D-glucopyranosyl unit at 7-O; (C) different oxygenated functions but neither a
methylenedioxy group nor a 7-O-D-glucopyranosyloxy unit; (D) a 2′-OH-group; (E) a
methyl group attached to C-2. Group A includes 4′-O- mono-, di-, and triglycosides and
one 3′-O-monoglucoside; group B contains only 7-O-monoglucosides; group C contains
only 7-O- or 4′-O-diglycosides, while no sugar residue occurs in isoflavonoids of groups D
and E. D-Glucopyranose is the only sugar present in mono- and diglucosides, whereas the
only known triglycoside (6) contains an additional L-rhamnopyranosyl moiety. Digluco-
sides are β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl derivatives, whereas triglycoside
6 is characterized by a β-D-glucopyranosyl-(1→2)-rutinosyl unit.
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Table 1. Biological activities reported for the isoflavonoids isolated from Iris germanica.

Compound Bioactivity Reference

Germanaism A (1) Cytotoxic activity IC50 = 43.9 ± 1.5 µM (MTT); 4.5 ± 0.4 µM (ATP) [34]

Tectoridin (9) Free-radical scavenger, antioxidant, anti-inflammatory, antiproliferative,
oestrogenic, anti-alcohol injury, hepatoprotective effects [48]

Iridin (10) Potent anti-inflammatory effects (induced paw edema test) [24]

Iridin A (11) High antioxidant activity;
α-amylase inhibitory activity [38,40]

Irisolidone 7-O-β-D-glucopyranoside (14) CyP1A inhibitor; QR inhibitor; DPPH scavenger

Irilone (17)

Cytotoxic activity IC50 = 47.7 ± 3.5 µM (MTT), 17.7 ± 1.4 µM (ATP);
potent anti-inflammatory effects (induced paw edema test):

high antioxidant activity;
α-amylase inhibitory activity;

potent inhibitor of cytochrome P450 1A activity (IC50 = 0.3 ± 0.1 µM);
immunomodulatory activity; CyP1A inhibitor; moderate QR inhibitor;

DPPH scavenger

[34]
[24]

[38,40]
[42]
[43]

Irilone 4′-O-β-D-glucopyranoside (19) Potent anti-inflammatory effects (induced paw edema test) [24]

8-Hydroxyirilone (21) High antioxidant activity; α-amylase inhibitory activity [38,40]

8-Hydroxyirilone 5-methyl ether (22) High antioxidant activity;
α-amylase inhibitory activity [38,40]

Iriflogenin (23) Potent inhibitor of cytochrome P450 1A activity (IC50 = 1.4 ± 0.6 µM);
CyP1A inhibitor; weak DPPH scavenger [42]

Irifloside (25) Cytotoxic activity IC50 = 21.5 ± 4.4 µM (MTT); 19.4 ± 1.3 µM (ATP) [34]

Irisolone (nigricin) (28) High anti-inflammatory activity [14]

Nigricanin (iriskashmirianin) (29) CyP1A inhibitor; moderate QR inhibitor; weak DPPH scavenger [42]

Iriskashmirianin A (30) Cytotoxic activity IC50 = 20.9 ± 2.7 µM (MTT); 4.3 ± 0.9 µM (ATP) [34]

5,7-Dihydroxy-3-(3′-hydroxy-4′,5′-
dimethoxy)-8-methoxy-4H-1-

benzopyran-4-one
(33)

Significant anti-inflammatory activity [14]

Tectorigenin (35)

Antifungal, free radical scavenger, antioxidant, anti-inflammatory,
anti-angiogenic, antiproliferative, antineoplastic, hypoglycaemic,

oestrogenic, hepatoprotectiv, antithrombotic, cardiovascular, anti-alcohol
injury activities;

in patented pharmaceutical compositions for the treatment of
hormone-related diseases

[48,49]

Irigenin (37)

Potent anti-inflammatory effects (induced paw edema test and inhibition
against superoxide); α-amylase inhibitory activity; potent inhibitor of
cytochrome P450 1A activity (IC50 = 1.2 ± 0.3 µM); CyP1A inhibitor;

moderate QR inhibitor, DPPH scavenger

[14,24]
[38,40]

[42]

Irigenin S (38) Potent anti-inflammatory effects (induced paw edema test) [24]

Irisolidone (42)

Potent anti-inflammatory effects (induced paw edema test);
α-amylase inhibitory activity; immunomodulatory activity; CyP1A
inhibitor; QR inhibitor; DPPH scavenger; antiproliferative activity

against amelanotic melanoma and large lung carcinoma cells; antioxidant
properties

[24]
[38,40]

[43]
[50]
[51]

Iristectorigenin A (43) Weak anti-inflammatory activity [14]



Molecules 2021, 26, 264 6 of 21

Table 1. Cont.

Compound Bioactivity Reference

Isoflavone (44) Moderate anti-inflammatory activity [14]

5,7,8-Trihydroxy-3-(4-methoxyphenyl)-2-
methyl-4H-chromen-4-one

(47)

Significant inhibition of TRAP in NF-kB ligand-induced osteoclastic
RAW 264.7 cells (66.67 ± 2.71%) [47]

6,7-Dihydroxy-3-(4-methoxyphenyl)-2-
methyl-4H-chromen-4-one

(48)

Significant inhibition of TRAP in NF-kB ligand-induced osteoclastic
RAW 264.7 cells (57.32 ± 2.46%) [47]

Other Flavonoids

Compared to isoflavonoids, representative compounds of other flavonoid classes
occur less frequently in the extracts of I. germanica. Isolated flavanones (Figure 3) are narin-
genin (49) [35] and 5,7,2′-trihydroxy-6-methoxyflavanone (50) [31], whereas flavanonols
include dihydroquercetin-7,3′-dimethylether (51) [45], dihydroquercetin-7,4′-dimethylether
(52) [35], and dihydroquercetin-7,3′-dimethylether-5-O-β-D-glucopyranoside (53) [35].
Flavones are represented by the O-glucoside cirsiliol-4′-O-glucopyranoside (54) [35] and
the C-diglucoside PID (55) [52,53]. Flavonols and flavan-3-ols include ombuin (56) [35] and
5,2′-dihydroxy-3-methoxy-6,7-methylenedioxyflavone (57) [31], and (+)-(2R,3S)-catechin
(58) [22], respectively. The anthocyanin delphanin (delphinidin-3-(4-p-coumaroylrhamnosyl-
(1→6)-glucoside)-5-glucoside) (59) was isolated from flowers of I. germanica [54].
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Miscellaneous Aromatic Compounds

Other aromatic compounds (Figure 4) isolated from I. germanica include the C-glucosylxanthones
mangiferin (60) [35] and irisxanthone (61) [35]; the phenol derivatives 2,4′,6-trihydroxy-4-
methoxybenzophenone-2-O-β-D-glucoside (62) [35], 1-(2-(6′-hydroxy-2′-methylcyclohex-



Molecules 2021, 26, 264 7 of 21

1′-enyloxy)-5-methoxyphenyl)ethanone (63) [23,44], isopeonol (64) [43], acetovanillone
(65) [15,23,35,37,44,46], androsin (66) [35], and 3-hydroxy-5-methoxyacetophenone (67) [24];
the alkaloids 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (68) [55] and the correspond-
ing (S)-(–)-methyl ester [55], (1S,3R)-methyl 1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-
b]indole-3-carboxylate (69) [55], methyl (1R,3R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-
b]indole-3-carboxylate (70) [55], 4-(9H-β-carbolin-1-yl)-4-oxobut-2-enoic acid methyl ester
(71) [55], 2-(furan-2-yl)-5-(2,3,4-trihydroxybutyl)-1,4-diazine (crotonine) (72) [55], 3-β-D-
ribofuranosyluracil (uridine) [55], 6-hydroxymethyl-3-pyridinol (73) [55], and 2-amino-1H-
imidazo-[4,5-b]pyrazine (74) [55]; the benzoic and cinnamic acid derivatives pyroglutamic
acid [35], protocatechuic acid (75) [22], chlorogenic acid (76) [22], caffeic acid (77) [22], fer-
ulic acid (78) [22], and p-hydroxy benzoic acid [22]. Crotonine (72) showed good analgesic
activity in vivo [55].
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Terpenoids

In addition to α- and β-amyrin [37], the most widespread triterpenoids occurring in
I. germanica are iridals (Figure 5) [56]. These bitter tasting terpenoids can be isolated in
appreciable amounts from the unsaponifiable fraction of lipid extracts from the rhizomes.
Characteristic features of all iridals are a multi-substituted cyclohexane ring with a long
side chain at C-11 (squalene numbering), an acrolein group at C-7, and a hydroxypropyl
chain at C-6. The latter two substitutions are typical fragments of a seco A-ring of triter-
penoids. Appropriate labeling experiments have shown that 2,3-epoxysqualene is the
precursor of the iridals and that a bicyclic intermediate is possibly formed in the biosyn-
thetic pathway, the A ring of which is subsequently opened to give the iridal skeleton [56].
Other labeling experiments have also proved the involvement of activated methionine for
the introduction of the extra methyl group at C-22 of an open-chain precursor of methy-
lated cycloiridals and irones [56]. The large group of iridals isolated from I. germanica
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include iridal (79) [57–60], iridogermanal (80) [61], isoiridogermanal (81) [60,62,63], 16-
O-acetylisoiridogermanal (82) [59,60,62], irisgermanical A (83) [60,62], irisgermanical B
(84) [60,62], irisgermanical C (85) [60,62,63], iriflorental (86) [59,60,62,63], α-irigermanal
(87) [59–63], iripallidal (88) [60,62,63], γ-irigermanal (89) [29,59–63], compound 90 [63],
α-dehydroirigermanal (91) [60,62,63], irigermanone (92) [63], iridobelamal A (93) [63],
iristectorone K (94) [64], 29-acetoxyspiroiridal (95) [59]. Compound 79 showed potent
antimalarial activity both in vitro and in vivo [57]. Compounds 79, 82, 86, 87, 89, and 95
exhibited significant cytotoxicity against K562 leukema and A2780 ovarian cell lines [59].
Compounds 86, 88 and 89 showed potent piscicidal activities at a concentration of less
than 1 µg/mL of median tolerance limit (TLm) value [60,62], and compound 89 exhibited
significant antiulcer activity [29,65].
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α- (96), β- (97), and γ-Irone (98) (Figure 6) are the odoriferous principle of iris oils. It is
well known that freshly harvested iris rhizomes do not contain irones, but their triterpenoid
precursors iridals (Figure 5). According to the traditional procedure, decorticated rhizomes
of some Iris species (e.g., I. germanica, I. pallida, I. florentina) are kept in a dry and aerated
environment for 2–3 years, then powdered, incubated with diluted sulphuric acid, and
steam-distilled to provide the precious “orris butter”. The mechanism of the oxidative
degradation affording irones from iridals is still poorly understood. The traditional process
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is long, troublesome and low yielding; hence, the high cost of the essence (butter). Purifica-
tion of the essence eliminates the fatty acids and yields the absolute, which is sold at several
thousands of dollars per kilogram [10]. It has been established that the distribution of
irone isomers and enantiomers in different qualities of iris oils depends upon the botanical
species of the plant [44]. Thus, the average composition of an iris butter prepared from
Iris germanica is the following: 0.91% of (+)-trans-α-irone (ee = 96%, (+)-96a), 61.48% of
(−)-cis-α-irone (ee = 82%, (−)-96b), 0.71% of β-irone (97) and 37.60% of (−)-cis-γ-irone (ee
= 38%, (−)-98) [10]. Irone-related compounds 99–118 (Figure 6) are also occurring in the
essential oil [66].
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Steroids and Miscellaneous Compounds

Common sterols isolated from I. germanica include: cholesterol [67], campesterol [67],
sitosterol [37,67], β-sitosterol [35], daucosterol [35], stigmasterol [24,67], and stigmasterol-
3-O-β-D-glucopyranoside [24]. Compounds of different biogenetic origin (Figure 7) in-
clude iriside A (96) [24], irisamides A (97) [41], irisamides B (98) [41], 6,6-ditetradecyl-6,7-
dihydrooxepin-2(3H)-one (102) [23], 2-acetoxy-3,6-dimethoxy-1,4-benzoquinone (108) [23].
Compounds 97 and 98 were reported to be active against L5178Y and Hela tumor cell
lines [41].

Molecules 2021, 26, x FOR PEER REVIEW 9 of 22 
 

 

degradation affording irones from iridals is still poorly understood. The traditional pro-
cess is long, troublesome and low yielding; hence, the high cost of the essence (butter). 
Purification of the essence eliminates the fatty acids and yields the absolute, which is sold 
at several thousands of dollars per kilogram [10]. It has been established that the distribu-
tion of irone isomers and enantiomers in different qualities of iris oils depends upon the 
botanical species of the plant [44]. Thus, the average composition of an iris butter prepared 
from Iris germanica is the following: 0.91% of (+)-trans-α-irone (ee = 96%, (+)-96a), 61.48% 
of (−)-cis-α-irone (ee = 82%, (−)-96b), 0.71% of β-irone (97) and 37.60% of (−)-cis-γ-irone (ee 
= 38%, (−)-98) [10]. Irone-related compounds 99–118 (Figure 6) are also occurring in the 
essential oil [66]. 

 
Figure 6. Irones and irone-related compounds isolated from Iris germanica. 

Steroids and Miscellaneous Compounds 
Common sterols isolated from I. germanica include: cholesterol [67], campesterol [67], 

sitosterol [37,67], β-sitosterol [35], daucosterol [35], stigmasterol [24,67], and stigmasterol-
3-O-β-D-glucopyranoside [24]. Compounds of different biogenetic origin (Figure 7) in-
clude iriside A (96) [24], irisamides A (97) [41], irisamides B (98) [41], 6,6-ditetradecyl-6,7-
dihydrooxepin-2(3H)-one (102) [23], 2-acetoxy-3,6-dimethoxy-1,4-benzoquinone (108) 
[23]. Compounds 97 and 98 were reported to be active against L5178Y and Hela tumor cell 
lines [41]. 

 
Figure 7. Miscellaneous compounds isolated from Iris germanica. 

  

Figure 7. Miscellaneous compounds isolated from Iris germanica.

2.1.2. Iris persica

I. persica is used to treat tumors and wound inflammation in the traditional medicine
of Kurdistan [5]. Essential oils obtained by hydrodistillation of air-dried flowers, leaves,
rhizomes, and fresh bulbs were investigated by GC–FID and GC–MS; moreover, the oil
antifungal activities were determined [12]. The major constituents of the flower essential
oil were phenylethanol (24.8%) and furfural (13.8%). This aldehyde was also the main
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component of the leaf and rhizome volatile fractions, with percentages of 39.0% and 22.2%,
respectively. Phenylacetaldehyde (37.1%) was the main constituent of the volatile fraction
from the bulbs. The oils exhibited moderate antifungal activity in vitro against strains of
the human pathogenic fungi Candida albicans, Microsporum canis, and Trichophyton menta-
grophytes, the plant–fungal pathogen Pyricularia oryzae, and the fungal food contaminant
Aspergillus carbonarius. The highest activity was exhibited by the essential oils isolated from
leaves and flowers, so that they could be considered natural antimicrobial agents.

A few known bioactive flavonoids (Figure 8) were abundant in the non-volatile
extracts of the plant. Thus, the C-diglucoside flavone embinin (55) was isolated from
flowers and leaves, the 6-C-glucoside flavone isovitexin (109) was isolated from flowers,
the stilbenoid (−)-trans-resveratrol-3-O-β-D-glucopyranoside (110) was found in rhizomes,
and the isoflavone (+)-tectorigenin (35) was isolated from bulbs [13]. In an MTT assay,
embinin (55) showed a significant inhibitory activity that was higher than the well-known
antitumor drug cisplatin, against MCF7, SkBr3, Ishikawa, BG-1, and A549 human tumor
cells. Moreover, embinin showed a remarkable DPPH radical scavenging activity, that was
comparable to that of the well-known antioxidant ascorbic acid [13].
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2.2. Phytochemical Studies on Iris postii

A decoction of the aerial parts of Iris postii Mouterde is used in the Iraqi folkloric
medicine as a general remedy against inflammations. The plant, which is native to Middle
East, grows wildly on the slopes of Mount Korek (Figure 9), a mountain located in the Erbil
province not far from the Iranian border, where it was collected for this investigation.
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Neither phytochemical investigations nor evaluations of biological activities have been
carried out on extracts of I. postii so far. Therefore, on the assumption that the bioactivity
mostly resided in polar metabolites, we decided to examine the phytochemical contents
and the antioxidant properties of polar extracts of the aerial parts and rhizomes.

At first, powdered aerial parts and rhizomes were separately defatted by soaking in
hexane at room temperature; most chlorophyll was also removed in this manner. Succes-
sively, each biomass was extracted with MeOH. The yields of the residues, IPA from the
aerial parts and IPR from the rhizomes, were 1.3 and 2.75% (w/w), respectively. Succes-
sively, IPA and IPR were separately partitioned between H2O and dichloromethane and
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H2O and n-butanol, respectively, to give fractions IPAD and IPRB, respectively. Multiple
medium-pressure liquid chromatographic separations of a sample of IPAD on reversed-
phase (RP-18) columns afforded L-tryptophan, androsin (66), apigenin 6-C-glucoside
(isovitexin) (109), swertisin (111), and 2”-O-rhamnosyl swertisin (112). Analogous chro-
matographic separations of a sample of IPRB gave trans-ε-viniferin (113), trans-resveratrol
3,4′-O-diglucoside (114), and isotectorigenin (115). The structures of isolated compounds
(Figure 10) were established mainly by extensive 1D- and 2D-NMR experiments and MS
spectrometry. Comparing our spectroscopic data with the pertinent literature, we found
some differences between our data and those reported from different laboratories, especially
for the NMR signals of swertisin (111) [68–73] and 2”-O-rhamnosylswertisin (112) [71,74];
moreover, literature data are often not consistent between each other and some spectra
have been recorded in solvents different from those used in this work. Therefore, although
the isolated compounds are known, the physical and spectroscopic data determined by
us are reported in the Experimental section, whereas the graphics are included in the
Supplementary Materials.
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HMBC correlations determined in the 2D-NMR spectrum of 2”-O-rhamnosyl swertisin (112A).

It is now generally accepted by scientists that excess oxidants and radicals, especially
oxygen radicals, through damage and mutation of DNA and other biomolecules, play a
major role in degenerative processes that may cause the insurgence and progression of
inflammatory processes, cancer, cardiovascular and atherosclerotic diseases, neurodegener-
ation, and aging [75,76]. Antioxidants isolated from natural sources could thus become
important chemotherapeutic agents in defense mechanisms against these toxic agents.
Therefore, with the aim to give some scientific evidence to the traditional use of I. postii in
the treatment of inflammations and in search of a new source of natural antioxidants, two
simple tests were performed in vitro to determine the total antioxidant capacity (TAOC)
of the crude extracts (see text) and the antiradical activity of the extracts and the isolated
compounds. The TAOC values of the extracts were determined by the phosphomolybdate
method (adjusted from references [77–79]), using ascorbic acid as the standard. The assay
was based on the reduction of hexavalent molybdenum Mo (VI) to the pentavalent form
[Mo (V)] by an antioxidant, and the formation of a green phosphate/Mo (V) complex
at acidic pH and at high temperature. The TAOC values were expressed as µg ascorbic
acid equivalent/mg extract (Table 2). The greater this value, the higher was the antioxi-
dant capacity. Thus, the total methanol extract of the aerial parts (IPA) and the n-butanol
sub-extract of the methanolic extract of the rhizomes (IPRB) exhibited the highest total
antioxidant activity. Moreover, comparing the TAOC of the IPA extract with that of the
dichloromethane sub-extract (IPAD), it appears that highly antioxidant compounds, likely
very polar, were not adequately extracted by CH2Cl2. Therefore, they need further study.
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Table 2. Antiradical and antioxidant activities of extracts and compounds isolated from Iris postii.

Sample
DPPH Scavenging Activity

Total Antioxidant Capacity (TAOC) b
EC50 (µg/mL) EC50 (µM/L) AAE a

Androsin (66) 48.94 ± 0.09 149.21 0.48 -

Isovitexin (109) 50.97 ± 1.11 117.99 0.46 -

Swertisin (111) 37.35 ± 0.13 83.74 0.63 -

2”-O-α-L-Rhamnosyl swertisin (112) 26.52 ± 0.11 44.79 0.89 -

ε-Viniferin (113) 26.06 ± 0.01 57.39 0.90 -

Trans-resveratrol
3,4′-O-di-β-D-glucopyranoside (114) 22.91 ± 0.05 41.50 1.03 -

Isotectorigenin (115) 34.87 ± 0.13 116.23 0.67 -

Ascorbic acid 23.52 ± 0.22 133.63 1.00 -

IPA c 19.21 ± 0.01 - 1.22 0.39

IPAD d 62.79 ± 0.03 - 0.37 0.21

IPR e 46.28 ± 0.12 - 0.51 0.29

IPRB f 39.11 ± 0.10 - 0.60 0.46
a Expressed as µg ascorbic acid equivalents/µg sample; b expressed as µg ascorbic acid equivalents/µg extract; c methanol extract of aerial
parts; d dichloromethane fraction from IPA; e methanol extract of rhizomes; f butanol fraction from IPR.

Subsequently, the free radical scavenging (FRS) activity of the isolated compounds 66,
109, 111–115, the crude extracts and the standard ascorbic acid were determined using the
2,2-diphenyl-1-picrylhydrazyl radical (DPPH) method (adjusted from references [78,79]).
DPPH is a stable, nitrogen-centered free radical which produces violet/purple color in
methanol solution and fades to shades of yellow color in the presence of a hydrogen
radical/electron-donor compound. The antiradical activity was expressed as EC50 value,
i.e., the concentration (µg/mL) of the sample required to scavenge 50% of the initial DPPH
concentration and as µg ascorbic acid equivalents/µg sample. In the case of isolated
compounds, the activity was also measured as EC50 (µM/L), which, in our opinion, is a
more accurate measurement of the intrinsic antiradical activity of a compound. The results
of the DPPH assay (Table 2) essentially confirmed those obtained by the molybdate test as
far as the antioxidant activity of the extracts is concerned. On the other hand, concerning
the DPPH scavenging activity of single compounds, 2”-O-α-L-rhamnosyl- swertisin (112),
ε-viniferin (113), and resveratrol 3,4′-O-di-β-D-glucopyranoside (114) were as effective as
the standard ascorbic acid or even more efficacious. The remaining isolated compounds,
androsin (66), isovitexin (109), swertisin (111), and isotectorigenin (115), were moderately
active, although the EC50 values of compounds 109, 111 and 115, expressed as µM/L, were
lower than that of ascorbic acid.

3. Material and Methods
3.1. General Experimental Techniques and Procedures

For most general experimental techniques and procedures, see reference [80]; 1H-
NMR and 13C-NMR chemical shifts (δ, ppm) are relative to signals of residual CHD2OD
in CD3OD δH 3.27 (central line of a quintuplet), 13CD3OD [δC 49.0 (central line of a septu-
plet)], and 13C-4 of C5D5N [δC 134.3 (central line of a triplet)], respectively. All the NMR
experiments were performed on a Bruker AV300 spectrometer, at 300 (1H) and 75.47 MHz
(13C), respectively. Deuterated solvents (purity 99.8%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). ESI-MS experiments were carried out on a Thermo-TSQ mass
spectrometer, by flow injection analysis (FIA), with the electron-spray ionization source
(ESI) at 5 kV on TIP capillary. Spectroscopy grade solvents (Sigma-Aldrich) were used.
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Preparative medium-pressure liquid chromatographic (MPLC) separations were carried
out on a Biotage Isolera instrument (Biotage, Uppsala, Sweden).

3.2. Plant Material

Aerial parts and rhizomes of I. postii Mouterde were separately collected on Korek
Mountain (GPS position: 36◦35′20” N, 44◦27′32” E). The plant was identified by botanist A.
H. Al-khayyat of Salahaddin University-Erbil/Iraq. A voucher specimen (accession number
7230) has been deposited at the Education Salahaddin University Herbarium (ESUH). The
vegetal materials were cleaned and air-dried under shade at room temperature (20–25 ◦C)
in a ventilated room until they reached constant weight. After drying, each plant part was
finely powdered using a laboratory grinding mill, and powdered materials were stored in
bottles at room temperature until analyses.

3.3. Extraction of I. postii and Chromatographic Fractionation of Extracts

Powdered aerial parts and rhizomes (200 g each) were separately soaked in hexane
(800 mL) with occasional shaking in an ultrasonic bath for 20 min, then left in the same
solvent for 5 h under continuous stirring at room temperature. Subsequently, the mixture
was decanted and filtered. This procedure was repeated three times for each part. Defatted
rhizomes and aerial parts were subsequently separately suspended in MeOH (800 mL) n
an ultrasonic bath for 20 min and then left in the same solvent for 5 h under continuous
stirring, at room temperature. The procedure was repeated three times for each vegetable
part. The mixtures were then filtered, and the solvent removed under vacuum in a rotary
evaporator to afford two crude residues: IPA (2.6 g) from aerial parts and IPR (5.5 g) from
rhizomes.

Subsequently, IPA (2.5 g) was suspended in MeOH-H2O (75:25, 350 mL) and extracted
with CH2Cl2 (3 × 350 mL) to afford, upon evaporation, a dichloromethane soluble powder
(1.9 g) (IPAD). Then, 500 mg of this residue was separated on a hand-packed reversed phase
column (LiChroprep RP18, 25–40 µm, 120 g, MerckMillipore, Darmstadt, Germany) using
a medium pressure liquid chromatographic (MPLC) instrument (Isolera ONE, Biotage,
Uppsala, Sweden). Solvents A and B of the mobile phase were H2O and MeOH, respectively.
A linear gradient was applied from a 70:30 A/B mixture to 100% solvent B (MeOH), over
30 min at room temperature, at a flow rate of 30 mL/min; the detection UV wavelength
was set at UV 254–366 nm. Finally, the column was washed with 100% MeOH for 3 min to
elute strongly adsorbed compounds. Forty-five fractions (20 mL each) were collected; the
solvent in the tubes was evaporated using a centrifuge under vacuum and a liquid nitrogen
trap, and the residues were weighed. The overall recovery of the chromatographed mixture
was 95%. Then, the content of each fraction was analyzed by TLC on analytical silica gel 60
(GF254, Merck, Darmstadt, Germany) plates, eluted with EtOAc/n-BuOH/HCO2H/H2O
(5:3:1:1), and on RP-18 (Sigma-Aldrich) plates, eluted with MeOH/H2O (1:1). Spots were
detected under UV light at 254 and 366 nm and by spraying the plates with 0.5% vanillin in
sulfuric acid/EtOH (4:1), followed by heating at 105 ◦C for about 1 min. Repeated MPLC
separation of main fractions on reversed-phase columns afforded L-tryptophan (29 mg),
androsin (66, 13 mg), apigenin 6-C-glucoside (isovitexin) (109, 45 mg), swertisin (111,
17 mg), 2”-O-rhamnosyl swertisin (112, 12 mg). A portion of IPR (5 g) was suspended in
500 mL of water and partitioned with 500 mL of n-butanol to yield, after evaporation, 2.2 g
of residue IPRB. Then, 1 g of this mixture was loaded onto a preparative RP-MPLC column
installed in the MPLC instrument that was eluted with a gradient of 20–100% MeOH in
H2O for 2 h at a flow rate of 10 mL/min. Repeated MPLC chromatographic separations
of the main collected fractions on reversed-phase columns afforded trans-ε-viniferin (113,
9 mg), trans-resveratrol 3,4′-O-diglucoside (114, 7 mg), and isotectorigenin (115, 21 mg).

3.4. Spectroscopic Data of Isolated Compounds

Androsin (4-O-β-D-glucopyranosyl-acetovanillone) (66): Colorless powder; TLC (sil-
ica gel, DCM/MeOH, 8:2): Rf = 0.67; UV λmax (MeOH): 275, 308 nm; the molecular formula



Molecules 2021, 26, 264 14 of 21

C15H20O8 was inferred from the [M + Na]+ ion peak at m/z 351.23 in the ESI-MS (positive
ion mode) spectrum; 1H-NMR (300 MHz, CD3OD) δ 7.67 (1H, dd, J = 8.5 and 1.9 Hz, H-6),
7.60 (1H, d, J = 1.9 Hz, H-2), 7.25 (1H, d, = 8.5 Hz, H-5), 5.06 (1H, d, J = 7.2 Hz, H-1′),
3.92 (3H, s, OCH3), 3.89 (1H, dd, J = 12.0 and 1.7 Hz H-6′b), 3.71 (1H, dd, J = 12.0 and
5.2 Hz H-6′a), 3.35–3.55 (4H, m, H-2′,3′,4′,5′), 2.59 (3H, s, COCH3); 13C-NMR (75 MHz,
CD3OD): aglycone moiety: δC 133.2 (0, C-1), 112.7 (1, C-2), 150.9 (0, C-3), 152.8 (0, C-4),
116.5 (1, C-5), 124.7 (1, C-6), 199.7 (0, C-7), 26.7 (3, C-8), 56.9 (3, OCH3); glucose moiety: δC
102.1 (1, C-1′), 75.0 (1, C-2′), 78.7 (1, C-3′), 71.5 (1, C-4′), 78.2 (1, C-5′), 62.8 (2, C-6′). The
numbers in parentheses are the protons attached to the corresponding carbon and were
determined by DEPT experiments. The 1H and 13C-NMR spectra were in accordance with
the literature [81]. Acid hydrolysis (3% aqueous H2SO4, 80 ◦C, 2 h) provided D-glucose,
identical by TLC and comparison of the optical rotation with an authentic sample.

Isovitexin (apigenin 6-C-β-glucopyranoside or 4′,5,7-trihydroxy-6-C-β-glucopyranoside)
(109): Pale yellow powder; TLC (RP-18, MeOH/H2O, 6:4): Rf = 0.51; UV λmax (MeOH):
270, 333 nm; the molecular formula C21H20O10 was determined from the [M + Na]+ ion
peak at m/z 455.22 in the ESI-MS (positive ion mode) spectrum and the [M − H]− ion peak
at m/z 431.20 in the ESI-MS (negative ion mode) spectrum; 1H-NMR (300 MHz, CD3OD)
aglycone moiety: δ 7.83 (2H, d, J = 8.7 Hz, H-2′ and H-6′), 6.93 (2H, d, J = 8.7 Hz, H-3′

and H-5′), 6.59 (1H, s, H-3), 6.50 (1H, s, H-8); glucose moiety: δ 4.91 (1H, d, J = 10.0 Hz,
H-1”), 4.19 (1H, distorted t, H-2”), 3.90 (1H, dd, J = 12.2 and 1.7 Hz, H-6”b), 3.75 (1H, dd,
J = 12.0 and 5.0 Hz, H-6”a), 3.52–3.35 (3H, m, H-3”,4”,5”); 13C-NMR (75 MHz, CD3OD)
aglycone moiety: δC 184.0 (0, C-4), 166.1 (0, C-2), 164.9 (0, C-7), 162.8 (0, C-4′), 162.0 (0,
C-5), 158.7 (0, C-9), 129.4 (1 and 1, overlapped C-2′ and C-6′), 123.1 (0, C-1′), 117.0 (1 and
1, overlapped C-3′ and C-5′), 109.2 (0, C-6), 105.2 (0, C-10), 103.8 (1, C-3), 95.2 (1, C-8);
glucose moiety: δC 82.6 (1, C-5”), 80.1 (1, C-3”), 75.2 (1, C-1”), 72.6 (1, C-2”), 71.8 (1, C-4”),
62.9 (2, C-6”). The numbers in parentheses are the protons attached to the corresponding
carbon and were determined by DEPT experiments. The 1H- and 13C-NMR spectra were in
accordance with the literature [82]. No rotational isomerism was observed, in accordance
with references [68,83].

Swertisin (4′,5-dihydroxy-7-methoxyflavone-6-C-β-D-glucopyranoside) (111): Pale
yellow powder; TLC (RP-18, MeOH/H2O, 6:4): Rf = 0.53; UV λmax (MeOH): 271, 332 nm;
IR (nujol): 3360, 1650, 1605 cm−1; the molecular formula C22H22O10 was inferred from the
[M + Na]+ ion peak at m/z 469.29 in the ESI-MS (positive ion mode) spectrum and the
[M − H]− ion peak at m/z 445.30 in the ESI-MS (negative ion mode) spectrum; 1H-NMR
(300 MHz, CD3OD) δ 7.90 (2H, d, J = 8.6 Hz, H-2′, 6′), 6.94 (2H, d, J = 8.6 Hz, H-3′, 5′), 6.76
(1H, s, H-8), 6.67 (1H, s, H-3), 4.87 (1H, d, J = 10.0 Hz, H-1”), 4.35–4.48 and 4,15–4.27 (1H
overall, 2 m, H-2” of two rotamers), 3.96 (3H, s, OCH3), 3.80–3.95 (1H, m, H-6”b), 3.55–3.75
(1H, m, H-6”a), 3.25-3.45 (3H, m, H-3”, 4”, 5”); 13C-NMR (75 MHz, C5D5N) δC 181.8 (0,
C-4), 163.4 (0, C-2), 162.2 (0, C-7)+, 162.2 (0, C-5) +, 160.8 (0, C-4′) +, 156.6 (0, C-9), 127.8
(1 and 1, overlapped C-2′ and C-6′), 120.5 (0, C-1′), 115.9 (1 and 1, overlapped C-3′ and
C-5′), 109.8 (0, C-6), 104.6 (0, C-10), 102.8 (1, C-3), 89.1 (1, C-8), 82.1 (1, C-5”), 79.9 (1, C-3”)
73.7 (1, C-2”), 71.4 (1, C-1”) #, 70.5 (1, C-4”) #, 62.4 (2, C-6”), 55.1 (3, OCH3). 13C-NMR
(75 MHz, CD3OD) δC 183.9 (0, C-4), 166.6 (0, C-2), 166.6 (0, C-7), 164.0 (0, C-4′) +, 163.9
(0, C-5) +, 159.1 (0, C-9), 129.6 (1 and 1, overlapped C-2′ and C-6′), 122.4 (0, C-1′), 117.4
(1 and 1, overlapped C-3′ and C-5′), 110.5 (0, C-6), 106.4 (0, C-10), 103.9 (1, C-3), 91.3 (1,
C-8), 82.6 (1, C-5”), 80.5 (1, C-3”), 74.5 and 74.8 (1, C-2”) *, 72.2 and 72.4 (1, C-1”) *, 71.6
(1, C-4”), 63.4 (3, C-6”), 56.7 and 57.0 (3, OCH3) *. #,+ Assignments are interchangeable; *
signal duplication indicating the presence of two rotamers, in the ratio of about 52:48, due
to restricted rotation around the C(sp3)-C(sp2) glucosyl-flavone linkage (C-6-C-1”) [68,83].
The numbers in parentheses are the protons attached to the corresponding carbon and
were determined by DEPT experiments.

2”-O-α-L-Rhamnosyl swertisin [4′,5-dihydroxy-7-methoxyflavone-6-C-(α-L-rhamnopy-
ranosyl-1→2-β-D-glucopyranoside)] (112): Yellow powder; TLC (RP-18, MeOH/H2O, 7:3):
Rf = 0.53. UV λmax (MeOH): 270, 332 nm; the molecular formula C28H32O14 was inferred
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from the [M + Na]+ ion peak at m/z 615.50 in the ESI-MS (positive ion mode) spectrum
and the [M − H]− ion peak at m/z 591.42 in the ESI-MS (negative ion mode) spectrum;
1H-NMR (300 MHz, CD3OD) δ 7.86 (2H, d, J = 8.8 Hz, H-2′, 6′), 6.90 (2H, d, J = 8.5 Hz,
H-3′, 5′), 6.72 (1H, s, H-8), 6.63 (1H, s, H-3), 5.21 and 5.08 (1H overall, d and d, J = 1.6 Hz,
H-1′′′) *, 4.91 and 4.86 (1H overall, d and d, J = 9.8 Hz, H-1”) *, 4.52 and 4.46 (1H overall, dd
and dd, J = 9.6 and 8.6 Hz, H-2”) *, 3.92 and 3.89 (3H overall, s and s, 7-OCH3) *, 3.85-3.95
(m, 2H, H-6”b and H-2′′′), 3.60–3.75 (1H, m, H-6”a), 3.50 (1H, t, J = 8.8 Hz, H-3”), 3,39 (1H,
t, J = 9.0 Hz, H-3′′′) *, 3.30-3.45 (3H, m, H-4”, H-5”, H-3′′′), 3.08 (1H, t, J = 9.5 Hz, H-4′′′),
2.30–2.40 and 2.60–2.70 (1H overall, m and m, H-5′′′) *, 0.69 and 0.62 (3H overall, d and
d, J = 6.2 Hz, H3-6′′′) *, 13C-NMR (75 MHz, CD3OD) δC 184.0 and 184.3 (0, C-4) *, 166.5
and 166.7 (0, C-7) *, 165.4 (0, C-2), 162.9 and 163.0 (0, C-4′) *, 161.2 and 161.7 (0, C-5) *,
159.1 and 159.3 (0, C-9) *, 129.5 and 129.6 (1 and 1, overlapped C-2′ and C-6′) *, 123.0 and
122.9 (0, C-1′) *, 117.1 (1 and 1, overlapped C-3′ and C-5′), 110.7 and 111.0 (0, C-6), 105.9
and 106.4 (0, C-10), 104.1 and 104.3 (1, C-3) *, 102.2 and 103.0 (1, C-1′′′) *, 91.6 and 92.2
(1, C-8) *, 82.4 and 82.5 (1, C-5”) *, 81.3 and 81.7 (1, C-3”), 76.8 and 78.9 (1, C-2”) *, 73.5
and 73.7 (1, C-4′′′) *, 72.8 and 73.2 (1, C-1”) *, 72.4 (1, C-2′′′) +, 72.0, 72.1 and 72.2 (1 and
1, C-4” and C-3′′′) *,+, 69.9 (1, C-5′′′), 63.3 (2, C-6”), 56.7 and 57.1 (3, 7-OCH3) *, 18.0 and
18.2 (3, C-6′′′).* Signal duplication due to the presence of two rotamers [68,83] in the ratio
of about 62:38; + assignments are interchangeable. The numbers in parentheses are the
protons attached to the corresponding carbon and were determined by DEPT experiments.
Proton and carbon signals were assigned on the basis of COSY, HSQC, HMBC (112A), and
NOESY correlations. Acid hydrolysis (3% aqueous H2SO4) of 112 yielded swertisin (111)
as the aglycone, and L-rhamnose, compared with an authentic sample by TLC and optical
rotation.

Trans-ε-viniferin (113): Pale yellow powder; mp: 148–150 ◦C; UV λmax (MeOH): 220,
305 and 320 nm; IR (nujol) 3350, 1610, 1575, 1505, 1330, 1256, 1160 cm−1; the molecular
formula C28H22O6 was inferred from the [M + H]+, [M + Na]+ and [2M + Na]+ ion peaks
at m/z 455.20, 477.21 and 930.94, respectively, in the ESI-MS (positive ion mode) spectrum
and the [M − H]− ion peak at m/z 453.31 in the ESI-MS (negative ion mode) spectrum;
1H-NMR (300 MHz, CD3OD) δ 7.11 (2H, d, J = 8.5 Hz, H-2′ and H-6′), 7.01 (2H, d, J = 8.5
Hz, H-2 and H-6), 6.79 (1H, d, J = 16.4 Hz, H-7′), 6.74 (2H, d, J = 8.5 Hz, H-3′ and H-5′),
6.62 (2H, d, J = 8.5 Hz, H-3 and H-5), 6.60 (1H, d, J = 1.8 Hz, H-14′), 6.54 (1H, d, J = 16.3
Hz, H-8′), 6.22 (1H, d, J = 1.8 Hz, H-12′), 6.16-6.14 (3H, m, H-10, H-12 and H-14), 5.33 (1H,
d, J = 6.6 Hz, H-7), 4.32 (1H, d, J = 6.6 Hz, H-8); 13C-NMR (75 MHz, CD3OD) δC 162.7 (0,
C-11′), 160.1 (0 and 0, overlapped C-11 and C-13), 159.8 (0, C-13′) +, 158.5 (0, C-4′) +, 158.4
(0, C-4) +, 147.4 (0, C-9), 136.9 (0, C-9′), 133.9 (0, C-1), 130.4 (0, C-1′), 130.3 (1, C-7′), 128.8 (1
and 1, overlapped C-2′ and C-6′), 128.2 (1 and 1, overlapped C-2 and C-6), 123.7 (1, C-8′),
120.1 (0, C-10′), 116.4 (1 and 1, overlapped C-3 and C-5), 116.3 (1 and 1, overlapped C-3′

and C-5′), 107.4 (1 and 1, overlapped C-10 and C-14), 104.4 (1, C-14′), 102.3 (1, C-12), 96.9
(1, C-12′), 94.8 (1, C-7), and 58.3 (1, C-8); + assignments are interchangeable. The numbers
in parentheses are the protons attached to the corresponding carbon and were determined
by DEPT experiments. The NMR spectra matched those reported in literature [84,85];
however, some assignments were corrected.

Resveratrol 3,4′-O-di-β-D-glucopyranoside (114): Pale yellow powder; the molecular
formula C26H32O13 was inferred from the [M + Na]+ ion peak at m/z 575.28 in the ESI-MS
(positive-ion mode) spectrum; 1H-NMR (300 MHz, CD3OD) δ 7.44 (2H, d, J = 8.7 Hz, H-2′

and H-6′), 7.05 (2H, d, J = 8.7 Hz, H-3′ and H-5′), 7.03 (1H, d, J = 16.4 Hz, H-8), 6.90 (1H,
d, J = 16.4 Hz, H-7), 6.78 (1H, br s, H-2), 6.57 (1H, br s, H-6), 6.44 (1H, t, J = 2.1 Hz, H-4),
4.89 (1H, d, J = 8.0 Hz, H-1”)+, 4.86 (1H, d, J = 8.0 Hz, H-1′′′)+, 3.85-3.97 (2H, m, H-6”b and
H-6′′′b), 3.67 (2H, two overlapped dd, J = 12.0 and 5.1 Hz, H-6”a and H-6′′′a), 3.35–3.50 (8H,
m, H-2”, H-2′′′, H-3′’, H-3′′′, H-4′’, H-4′′′, H-5”, H-5′′′); +assignments are interchangeable;
13C-NMR (75 MHz, CD3OD) δC 160.5 (0, C-3), 159.6 (0, C-5), 158.8 (0, C-4′), 141.1 (0, C-1),
133,1 (0, C-1′), 129.4 (1, C-8), 128.7 (1 and 1, overlapped C-2′ and C-6′), 128.2 (1, C-7), 117.9 (1
and 1, overlapped C-3′ and C-5′), 108.5 (1, C-6), 107.1 (1, C-2), 104.4 (1, C-4), 102.4 and 102.2
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(1 each, C-1” and C-1′′′), 78.4, 78.3, 78.2, 78,1 (1 each, C-5”, C-5′′′, C-3” and C-3′′′), 74.9 and
74.9 (1 each, C-2” and C-2′′′), 71.5 and 71.4 (1 each, C-4” and C-4′′′), 62.6 and 62.5 (2 each,
C-6” and C-6′′′). The numbers in parentheses are the protons attached to the corresponding
carbon and were determined by DEPT experiments. Signal assignments to protons and
carbons were established on the basis of COSY, HSQC, HMBC, and NOESY correlations.
The data are in accordance with those reported in literature [86]. Acid hydrolysis (3%
aqueous H2SO4) provided D-glucose, identical by TLC and comparison of the optical
rotation with an authentic sample.

Isotectorigenin (pseudotectorigenin or psi-tectorigenin) (4′,5,7-trihydroxy-8-methoxyi-
soflavone) (115): Pale yellow powder, TLC (RP-18, MeOH/H2O, 8:2): Rf = 0.52. UV λmax
(MeOH): 269, 336 (sh) nm; the molecular formula C16H12O6 was inferred from the [2M
+ Na]+ ion peak at m/z 622.97 and the [M+Na]+ ion peak at m/z 323.12 in the ESI-MS
(positive ion mode) spectrum, and the [M − H]− ion peak at m/z 299.17 in the ESI-MS
(negative ion mode) spectrum. 1H-NMR (300 MHz, CD3OD) δ 7.81 (1H, s, H-2), 7.30 (2H, d,
J = 8.4 Hz, H-2′, 6′), 6.79 (2H, d, J = 8.4 Hz, H-3′, 5′), 6.09 (1H, s, H-6), 3.77 (3H, s, 8-OCH3).
13C-NMR (75 MHz, CD3OD) δC 181.0 (0, C-4), 159.7 (0, C-7), 158.8 (0, C-4′), 156.7 (0, C-9),
153.7 (0, C-5), 153.3 (1, C-2), 137.2 (0, C-8), 131.5 (1 and 1, C-2′ and C-6′), 124.1 (0, C-3), 123.4
(0, C-1′), 116.3 (1 and 1, C-3′ and C-5′), 102.3 (0, C-10), 98.2 (1, C-6), 60.6 (3, 8-OCH3). The
numbers in parentheses are the protons attached to the corresponding carbon and were
determined by DEPT experiments. Proton and carbon signals were assigned on the basis
of HSQC, HMBC, and NOESY correlations. The data are in accordance with those reported
in literature [87].

3.5. Free Radical Scavenging Activity

Briefly, a 0.3 mM solution of DPPH in MeOH was prepared. To 1 mL of this solution,
3 mL of sample or extract solution in 10% aqueous MeOH at different concentrations (10,
25, 50, 100, 150, 200, 250, 350 µg/mL) was added. Subsequently, the mixture was shaken
vigorously and incubated for 30 min at 22 ◦C in the dark until a stable absorbance value
(A) at 517 nm was obtained, that was measured using a UV-Visible spectrophotometer
(Lambda 25 UV/Vis spectrometer N.3903, Perkin Elmer instruments, Waltham, MA, USA).
A lower absorbance of the reaction mixture indicated higher free radical scavenging (FRS)
activity. The DPPH solution (1 mL), plus 10% MeOH (3 mL), was used as the control. The
FRS% was calculated using the formula: [1 − (Asample/Acontrol)] × 100. The curve of the
% scavenging activity against the concentration was plotted for each sample using the
MS Excel-based program to calculate the EC50 value, i.e., the concentration (µg/mL or
µM/L) of the sample required to scavenge 50% of the initial DPPH concentration. Each
analysis was carried out in triplicate and the mean ± SD (n = 3) was calculated. Ascorbic
acid (Sigma-Aldrich) was used as a standard antiradical agent. The lower the EC50 value,
the higher the sample antiradical activity. The antiradical activity was also expressed as
ascorbic acid equivalents (AAEs) (Table 2), i.e., µg ascorbic acid equivalents/µg sample.
These values were calculated using the formula: EC50 ascorbic acid (µg/mL)/EC50 sample
(µg/mL) [77].

3.6. Total Antioxidant Capacity (TAOC—Ammonium Phosphomolybdate Assay)

Briefly, samples of dry extracts or standard ascorbic acid, dissolved in MeOH/distilled
H2O (50:50), were combined with 3.0 mL of reagent solution (0.6 M sulfuric acid, 28 mM
sodium phosphate and 4 mM ammonium molybdate) to achieve a series of eight final
concentrations in the range of 12–450 µg/mL. The tubes were capped and incubated in a
boiling water bath at 95 ◦C for 90 min. The samples were cooled to 22 ◦C and absorbance
was measured at 695 nm against the blank using the cited UV-Visible spectrophotometer.
From each series of measures, a sigmoidal curve was obtained by data interpolation and
the EC50 value of each sample was calculated as the concentration corresponding to 50%
activity. The blank contained 3.0 mL of the reagent solution and 0.3 mL of MeOH/distilled
H2O (50:50), and it was incubated under the same conditions as the samples. Each analysis
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was carried out in triplicate and the mean ± SD (n = 3) was calculated. The TAOC values
were expressed as µg ascorbic acid equivalents/µg extract (Table 2). They were calculated
using the formula: EC50 (µg/mL) ascorbic acid)/EC50 (µg/mL) extract. The EC50 of
ascorbic acid used in TAOC calculation was 26.12 ± 0.56 µg/mL.

3.7. Acid Hydrolysis of Compounds 112 and 114

Compounds 112 and 114 (2.0 mg each) were separately dissolved in 3% aqueous
H2SO4 in a sealed vial and heated at 90 ◦C for 45 min. After cooling to room temperature
and extraction with CHCl3, the aqueous layer was repeatedly evaporated to dryness
with the aid of MeCN. The residues were identified as L-(+)-rhamnose and D-(+)-glucose,
respectively, by TLC and optical rotation upon comparison with authentic samples.

4. Conclusions

A dozen Iris species are used in the traditional medicine of Kurdistan. In the first part
of this paper, we have reported the structures of the main constituents, traditional uses and
biological activities found in the literature for the few species growing in Kurdistan that
have been investigated so far. The most characteristic secondary metabolites are various ter-
penoids, among which iridal derivatives are the most typical ones, and phenolic derivatives,
among which isoflavones predominate. Most of these Iris metabolites exhibited various
bioactivities. Based on these data, we then investigated, for the first time, the contents of
the methanolic extracts of I. postii aerial parts and rhizomes. L-tryptophan, androsin (66),
apigenin 6-C-glucoside (isovitexin) (109), swertisin (111), and 2”-O-rhamnosyl swertisin
(112) were isolated from the aerial parts, whereas chromatographic separation of the extract
from rhizomes afforded trans-ε-viniferin (113), trans-resveratrol 3,4′-O-diglucoside (114),
and isotectorigenin (115). To the best of our knowledge, this is the first finding of com-
pounds 112–115 in the genus Iris. Isolated compounds showed a wide range of bioactivities,
in addition to the excellent radical-scavenging properties exhibited in this investigation
by 2”-O-α-L-rhamnosyl- swertisin (112), ε-viniferin (113), and resveratrol 3,4′-O-di-β-D-
glucopyranoside (114). Thus, isovitexin (109) has been reported to be an anti-inflammatory,
antihyperglycemic, sedative agent with insulin secretagogue properties and to display
antioxidant, anti-inflammatory, neuroprotective, anti-diabetic, antitumor effects [88,89];
swertisin (111) exhibited antioxidant, anti-inflammatory, antihyperglycemic activities with
insulin secretagogue and adenosine A1 receptor antagonist properties [90]; swertisin
(111) and 2”-O-rhamnosylswertisin (112) exhibited strong α-glucosidase inhibitory activity
in vitro [91] and effective mechanical antinociceptive properties [81]; ε-viniferin exhibited
relatively strong inhibition of α-glucosidase in vitro [92] and inhibited both human LDL
and HDL oxidation in vitro [85]; resveratrol diglucoside 114 decreased ethanol-induced
oxidative DNA damage in mouse brain cells, possibly via inhibition of oxidative stress [93],
and displayed highly selective antiproliferative activity against tumor cells [94].

In conclusion, the few Iris species growing in Kurdistan that have been investigated
so far demonstrated to be novel viable sources of various bioactive compounds. Moreover,
the remarkable antioxidant and radical scavenging activities of the methanol extracts of
aerial parts and rhizomes of I. postii, as well as the anti-inflammatory properties reported
for different isolated compounds, validate the traditional medicinal use of this plant in
Kurdistan. Further studies aimed to evaluate the in vivo potential of Iris extracts in various
models and to isolate and identify the antioxidant principles occurring in the most polar
fractions of the methanolic extract of I. postii aerial parts shall be carried out in due time.

Supplementary Materials: NMR and MS spectra of isolated compounds are available online,
Figure S1: 1H-NMR spectrum (300 MHz, CD3OD) of androsin, Figure S2: 13C-NMR spectrum
(75 MHz, CD3OD) of androsin, Figure S3: ESI-MS (positive ion mode) spectrum of androsin,
Figure S4: 1H-NMR spectrum (300 MHz, CD3OD) of isovitexin, Figure S5: 13C-NMR spectrum
(75 MHz, CD3OD) of isovitexin, Figure S6: ESI-MS (positive ion mode) spectrum of isovitexin,
Figure S7: ESI-MS (negative ion mode) spectrum of isovitexin, Figure S8: 1H-NMR spectrum
(300 MHz, CD3OD) of swertisin, Figure S9: 13C-NMR spectrum (75 MHz, CD3OD) of swertisin,
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Figure S10: 13C-NMR spectrum (75 MHz, C5D5N) of swertisin, Figure S11: ESI-MS (positive ion
mode) spectrum of swertisin, Figure S12: ESI-MS (negative ion mode) spectrum of swertisin,
Figure S13: 1H-NMR spectrum (300 MHz, CD3OD) of 2”-O-α-L-rhamnosyl swertisin, Figure S14:
COSY spectrum of 2”-O-α-L-rhamnosyl swertisin, Figure S15: 13C-NMR spectrum (75 MHz, CD3OD)
of 2”-O-α-L-rhamnosyl swertisin, Figure S16: HSQC spectrum of 2”-O-α-L-rhamnosyl swertisin,
Figure S17: HMBC spectrum of 2”-O-α-L-rhamnosyl swertisin, Figure S18: HMBC spectrum (en-
largement 1) of 2”-O-α-L-rhamnosyl swertisin, Figure S19: HMBC spectrum (enlargement 2) of
2”-O-α-L-rhamnosyl swertisin, Figure S20: NOESY spectrum of 2”-O-α-L-rhamnosyl swertisin,
Figure S21: ESI-MS spectra (positive and negative ion mode) of 2”-O-α-L-rhamnosyl swertisin,
Figure S22: 1H-NMR spectrum (300 MHz, CD3OD) of tryptophan, Figure S23: 13C-NMR spectrum
(75 MHz, CD3OD) of tryptophan, Figure S24: ESI-MS (positive ion mode) spectrum of tryptophan,
Figure S25: 1H-NMR spectrum (300 MHz, CD3OD) of isotectorigenin, Figure S26: 13C-NMR spec-
trum (75 MHz, CD3OD) of isotectorigenin, Figure S27: ESI-MS (positive ion mode) spectrum of
isotectorigenin, Figure S28: ESI-MS (negative ion mode) spectrum of isotectorigenin, Figure S29:
1H-NMR spectrum (300 MHz, CD3OD) of trans-ε-viniferin, Figure S30: 13C-NMR spectrum (75 MHz,
CD3OD) of trans-ε-viniferin, Figure S31: ESI-MS (positive ion mode) spectrum of trans-ε-viniferin,
Figure S32: ESI-MS (negative ion mode) spectrum of trans-ε-viniferin, Figure S33: 1H-NMR spectrum
(300 MHz, CD3OD) of resveratrol-3,4′-O-di-β-D-glucopyranoside, Figure S34: 13C-NMR spectrum
(75 MHz, CD3OD) of resveratrol-3,4′-O-di-β-D-glucopyranoside, Figure S35: HSQC spectrum of
resveratrol 3,4′-O-di-β-D-glucopyranoside, Figure S36: HMBC spectrum of resveratrol-3,4′-O-di-
β-D-glucopyranoside, Figure S37: NOESY spectrum of resveratrol 3,4′-O-di-β-D-glucopyranoside,
Figure S38: ESY-MS spectrum (positive ion mode) of resveratrol-3,4′-O-di-β-D-glucopyranoside.
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